3.1000 \(\int \frac{1}{x^2 \sqrt{2+2 a-2 (1+a)+b x^2+c x^4}} \, dx\)

Optimal. Leaf size=59 \[ \frac{c \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right )}{2 b^{3/2}}-\frac{\sqrt{b x^2+c x^4}}{2 b x^3} \]

[Out]

-Sqrt[b*x^2 + c*x^4]/(2*b*x^3) + (c*ArcTanh[(Sqrt[b]*x)/Sqrt[b*x^2 + c*x^4]])/(2*b^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.05555, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3, 2025, 2008, 206} \[ \frac{c \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right )}{2 b^{3/2}}-\frac{\sqrt{b x^2+c x^4}}{2 b x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[2 + 2*a - 2*(1 + a) + b*x^2 + c*x^4]),x]

[Out]

-Sqrt[b*x^2 + c*x^4]/(2*b*x^3) + (c*ArcTanh[(Sqrt[b]*x)/Sqrt[b*x^2 + c*x^4]])/(2*b^(3/2))

Rule 3

Int[(u_.)*((a_) + (c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(b*x^n + c*x^(2*n))^p, x] /;
FreeQ[{a, b, c, n, p}, x] && EqQ[j, 2*n] && EqQ[a, 0]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^2 \sqrt{2+2 a-2 (1+a)+b x^2+c x^4}} \, dx &=\int \frac{1}{x^2 \sqrt{b x^2+c x^4}} \, dx\\ &=-\frac{\sqrt{b x^2+c x^4}}{2 b x^3}-\frac{c \int \frac{1}{\sqrt{b x^2+c x^4}} \, dx}{2 b}\\ &=-\frac{\sqrt{b x^2+c x^4}}{2 b x^3}+\frac{c \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{b x^2+c x^4}}\right )}{2 b}\\ &=-\frac{\sqrt{b x^2+c x^4}}{2 b x^3}+\frac{c \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{b x^2+c x^4}}\right )}{2 b^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0629977, size = 68, normalized size = 1.15 \[ \frac{c \sqrt{x^2 \left (b+c x^2\right )} \left (\frac{\tanh ^{-1}\left (\sqrt{\frac{c x^2}{b}+1}\right )}{2 \sqrt{\frac{c x^2}{b}+1}}-\frac{b}{2 c x^2}\right )}{b^2 x} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[2 + 2*a - 2*(1 + a) + b*x^2 + c*x^4]),x]

[Out]

(c*Sqrt[x^2*(b + c*x^2)]*(-b/(2*c*x^2) + ArcTanh[Sqrt[1 + (c*x^2)/b]]/(2*Sqrt[1 + (c*x^2)/b])))/(b^2*x)

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 73, normalized size = 1.2 \begin{align*} -{\frac{1}{2\,x}\sqrt{c{x}^{2}+b} \left ( -c\ln \left ( 2\,{\frac{\sqrt{b}\sqrt{c{x}^{2}+b}+b}{x}} \right ){x}^{2}b+\sqrt{c{x}^{2}+b}{b}^{{\frac{3}{2}}} \right ){\frac{1}{\sqrt{c{x}^{4}+b{x}^{2}}}}{b}^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(c*x^4+b*x^2)^(1/2),x)

[Out]

-1/2/x*(c*x^2+b)^(1/2)*(-c*ln(2*(b^(1/2)*(c*x^2+b)^(1/2)+b)/x)*x^2*b+(c*x^2+b)^(1/2)*b^(3/2))/(c*x^4+b*x^2)^(1
/2)/b^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{4} + b x^{2}} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.52262, size = 306, normalized size = 5.19 \begin{align*} \left [\frac{\sqrt{b} c x^{3} \log \left (-\frac{c x^{3} + 2 \, b x + 2 \, \sqrt{c x^{4} + b x^{2}} \sqrt{b}}{x^{3}}\right ) - 2 \, \sqrt{c x^{4} + b x^{2}} b}{4 \, b^{2} x^{3}}, -\frac{\sqrt{-b} c x^{3} \arctan \left (\frac{\sqrt{c x^{4} + b x^{2}} \sqrt{-b}}{c x^{3} + b x}\right ) + \sqrt{c x^{4} + b x^{2}} b}{2 \, b^{2} x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b)*c*x^3*log(-(c*x^3 + 2*b*x + 2*sqrt(c*x^4 + b*x^2)*sqrt(b))/x^3) - 2*sqrt(c*x^4 + b*x^2)*b)/(b^2*
x^3), -1/2*(sqrt(-b)*c*x^3*arctan(sqrt(c*x^4 + b*x^2)*sqrt(-b)/(c*x^3 + b*x)) + sqrt(c*x^4 + b*x^2)*b)/(b^2*x^
3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \sqrt{x^{2} \left (b + c x^{2}\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt(x**2*(b + c*x**2))), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError